

xapmcsImage

Digital Frame Image & RSS Feed

Collect and Merge Image Data with Text Overlays

Michael McSharry

Jan 15, 2010

Page 1 of 35

Table of Contents
1 Introduction ... 3
2 xapmcsImage Setup .. 3

2.1 Top Level Organization ... 3
2.2 Image Construction .. 4
2.3 Parameter Expressions ... 6

3 RSS Image Browser Page ... 7
4 xAP Data and Setup .. 20
5 xAP Setup ... 23

5.1 Background .. 23
5.2 mcsXap Installation .. 24
5.3 mcsXap Initial Setup .. 25
5.4 mcsXap Initial Use ... 27
5.5 xapmcsHub Setup ... 30
5.6 xAP Message Viewer ... 31

6 xAP Schema .. 35
6.1 xapmcsImage .. 35

6.1.1 Receive xAP Schema .. 35
6.1.2 Transmit xAP Schema .. 35

Table of Figures

Figure 1 xapmcsImage Tray Icon ... 3
Figure 2 RSS Image Page Example .. 9
Figure 3 RSS #1 Results Example .. 10
Figure 4 RSS #1 XML Example ... 11
Figure 5 RSS #2 Results Example .. 12
Figure 6 RSS #2 XML Example ... 13
Figure 7 RSS Feed 3 Definition Example.. 16
Figure 8 RSS Feed 3 Resultant Image ... 17
Figure 9 xAP Alias Selection .. 21
Figure 10 xAP Data Setup Options ... 22
Figure 11 Homseer Setup Interfaces Page .. 25
Figure 12 mcsXap Primary Setup Options ... 26
Figure 13 Message Selection Filters ... 30
Figure 14 xAP Hub Activity Form ... 31
Figure 15 xAP Viewer .. 33
Figure 16 xAP Viewer Message Detail .. 34

Table of Tables

None

Page 2 of 35

1 Introduction
xapmcsImage is intended to produce custom images for display on digital photo frames.
It includes an edit function to identify the contents of constructed images, data gathering
functions, text overlay, expression evaluation, periodic reconstruction and service of
constructed RSS feeds.

The application runs standalone and will accept xAP message data as a source of
information used for text and icon overlays. The text overlay can be formed with literal
strings and as the result of expressions from received data.

Images are obtained from the file system, internet downloads and as a result of chart
requests via xapmcsChart.

Image processing capabilities consists of positioning, sizing and merging. Text
processing allows specification of color, transparency, font, size and style.

xapmcsImage it is a standalone application that can be used to statically build images
and RSS xml files. For effective use in generating images based upon dynamic data an
xAP environment is needed. For the Homeseer user this will consist of mcsXap
Homeseer plugin that will make available Homeseer information via xAP protocol and an
xAP hub that will route xAP messages within a PC.

2 xapmcsImage Setup

2.1 Top Level Organization

The contents of the zip package should be unzipped into a convenient location such as
C:\Program Files\xAP\xapmcsImage\. The executable program is xapmcsImage.exe. It
is a .NET application and provides no ActiveX/COM interface.

The install will deposit a cascading style sheet in the \HTML subfolder. This can be
edited, if desired, to achieve a browser display that fits better with other applications.
At the same location there will also be an .htm file that contains clickable links that will
be shown at the top of the browser display to provide quick access to other applications.
This will need to be edited to reflect any applications that are appropriate for your
environment.

xapmcsImage is started by running xapmcsImage.exe. It will present itself as a tray icon
such as is shown in Figure 1. Clicking on the Icon will bring up a menu from which
various browser pages can be selected.

Figure 1 xapmcsImage Tray Icon

Page 3 of 35

The tray icon, when left-clicked will make available four options. The first, xAP Data, is
the page where setup options are selected and xAP inputs are selected. The second, RSS
Image, is the editor where RSS feeds and Image canvases are specified. The others are
support pages to view log messages and this manual as a help file.

2.2 Image Construction
Images are constructed from a set of sequential activities. The activities are specified
from the RSS Image browser selection.

Each activity has an associated set of parameters. The parameters can be literal numbers
and text or they can be based upon dynamic data received on the LAN. Expressions can
be used for any parameter that resolves to a number. For example, the X coordinate of an
item can be specified as “100” or as “60+40”. It can also be specified as a function of
dynamic data such as “{StartingPoint}+20”.

Any parameter that resolves to text will be entered as a pull-down selection with three
exceptions. One is the color and transparency which can be either a literal hex value or
based upon dynamic data. For example “80FF9070” or “{BackgroundColor}” are
acceptable entries for a color. The second is the Filename or URL used where again the
literal value or a dynamic value can be entered. The third is the expression used in the
TEXT activity. In this case a combination of numeric expressions, dynamic data, and
string concatenation can be used.

Initially a table of ten rows is presented. The first column of each row identifies the type
of activity and the remaining columns are parameters associated with the activity. The
activities are performed in the row order of the table.

The activities supported are RSS, CANVAS, GRAPH, URL, CROP, NOCROP, IMAGE,
BOX, FONT, and TEXT.

RSS allows a user to specify an RSS server other than xapmcsImage. It is also the place
where the rate of reconstruction is identified. The reconstruction consists of all images
and the RSS xml file. The RSS feed and supporting images will not be built if the
reconstruction rate is left blank. This feature can be used to temporarily stop
reconstruction of a specific RSS feed. The rate is specified as the number of seconds.
The RSS server supported by xapmcsImage is the same port as the browser and this port
is specified on the xAP Data browser page or manually edited in
\Config\xapmcsImage.ini should the default port 8026 not be initially reachable.

CANVAS allows a user to identify the size of the constructed image. The default is
800x480 which is the size for the Kodak WiFi W820 or W1020 frame. It also provides
an second place where the reconstruction rate is identified. This is only necessary if an
RSS activity is not specified. The last parameter is the output filename. This can be any
location on the LAN using UNC convention. If left blank the image will be constructed
in the \HTML folder under the xapmcsImage install.

Page 4 of 35

GRAPH is used to make a request to xapmcsChart to construct a chart image. The
parameters consist of those elements needed by xapmcsChart to identify the chart to be
constructed. A wait parameter is used to specify a timeout period. xapmcsImage will
look at 250 millisecond intervals for the chart to be constructed and will give up at the
Wait seconds inputs. The default wait is 10 seconds and is invoked if the Wait field is
blank. The chart output file can be specified or if left blank the output will be placed in
the \HTML subfolder.

URL is used to download an image from the internet or other local server and also can be
used to retrieve an image from the file system. The URL parameter is the full http (or
ftp) Universal Resource Locator for the image to be downloaded. A Wait parameter can
also be used to limit the wait for the image to download. If not specified a wait of 10
seconds is enforced. For local file system a UNC or local file path convention can be
used.

CROP is used as a precursor to the IMAGE tag to define the subset of the full image
generated by the URL, GRAPH or IMAGE activities that will be placed on the canvas.
The CROP is used to select a subset of a source image or remove unwanted segments of a
source image. Cascading CROP activities are not supported directly, but can be achieved
by using the output of one CANVAS as the input to a second where further cropping can
be done.

NOCROP is used following the IMAGE command to remove the copping window of
subsequent source images. It is only needed if multiple IMAGE commands are used on
the same canvas. NOCROP is the default which means the source image is resized in
accordance with the IMAGE activity.

IMAGE is used to position an image on the canvas and optionally alter the size. The
location is specified with starting X (horizontal) and Y (vertical) coordinate. The canvas
coordinate system is (X=0, Y=0) at upper left and (X=Width, Y=Height) as lower left
where Width and Height are identified with the CANVAS line. Note that no negative
coordinates are available.

If the IMAGE processing is associated with a GRAPH or URL image then the File path
parameter will normally be left blank. If it associated with a file system file then this
filename will be entered. Note that either the URL or IMAGE activities can be used to
obtain an existing image from the LAN.

BOX is used to define a rectangular element that is normally used to constrain the
overlay of text on the image. Its parameters consist of the location (X,Y) and size (W,H)
as well as the background color within the box. The color is specified as an alpha
channel for transparency and RGB for color. This is an 8 character hex as AARRGGBB.
An AA of 00 is used for total transparency. The default box is full transparency with
same size as canvas.

Page 5 of 35

FONT is used to define the characteristics of text overlay. The parameters are all pull-
down selections with the exception of the font size which is numeric point representation.
Default font is TBD

TEXT is used to overlay text on top of other images on the canvas. The text parameters
specify positioning within the most recently defined BOX rectangle and an expression
that will resolve to a text string. The result of the expression will be the overlaid text.

2.3 Parameter Expressions
A fixed text overlay is entered using leading and training regular quote (“). For example,
“ABC 123”. The ampersand character can be used to concatenate text segments. For
example “ABC” & “-“ & “123”.

Numeric components of the expression use VB syntax. For example, Round(1/3,2)
would be used to divide 1 by 3 and show the result with 2 significant digits (i.e. 0.33).
Numeric and literal expressions can be combined. For example
“AB”&Round(1/3,2)&”Degrees F”

Conditional expressions have the form “If condition | true condition substitution | false
condition substitution”. The first three characters are “If “. The “|” is used to separate
the three elements of the IF/THEN/ELSE expression. Note that alias substitution
(described below) can be used in any part of the IF/THEN/ELSE expression.

The elements of expressions can also come from data received in xAP messages. The
xAP data page is where the data of interest is identified. Any data value that will be used
as part of a TEXT expression will be identified with an Alias name. This name will then
be used in the expression. “{}” are used to encase the alias to distinguish it from other
parts of the expression. Assume an alias has been defined called Occupancy and the data
expected will be either “Home” or “Away”. The following expression will produce a text
string that will show the current status and the time it changed to this status.

“House Status is ”&{Occupancy}&” since “&{Occupancy.Date}

Note in the prior example the {Occupancy.Date} vs. {Occupancy}. When on
{Occupancy} is used then the data as received in the xAP message will be used. When a
“.xxx” property is include then a characteristic of this alias will be used. The available
characteristics are String, Text, Value, Image, and Date.

“String” is full value of the received data. It is equivalent to {Alias}.
“Text” is the received data excluding everything contained within HTML tags.
“Value” is the same as “Text” with the further restriction that only the numeric portion is
used. When used as part of computations then the “.Value” should always be used to
assure valid data in the computation.
“Image” will identify the target of the and expand the target path to include
the path of the xapmcsImage HTML folder. It does not retrieve the img file, but it does
provide a way to reference it in expressions. The file will need to be manually copied to

Page 6 of 35

the HTML folder. As an example, assume that HS has ON.GIF in its status string and
this ON.GIF file is located in the Homeseer\HTML folder. This ON.GIF file will need to
be manually copied to the xapmcsImage HTML folder. When the RSS frame image is
constructed, xapmcsImage will pull this ON.GIF file from its \HTML should the
{Alias.Image} parameter be used as part of an expression. Note that {Alias.Image} is not
used as a TEXT element, but only as the File parameter of the IMAGE or URL tags.

There are some common aliases and characteristics that are internally defined and not the
result of a xAP message item. These are the {Now} alias and the ”FormatDate” and
“FormatNumber” characteristics. Format uses the same formatting convention as the
.NET ToString formatter. See http://msdn.microsoft.com/en-
us/library/427bttx3(VS.71).aspx For example the following shows the day of week and
time to the nearest minute for the current time {Now.Format(ddd HH:mm)}. The Format
characteristic can be applied to any alias such as {Occupancy.Date.FormatDate(d)} or
{Cost.FormatNumber(c)}

3 RSS Image Browser Page
The RSS Image browser page supports the construction of images as defined in Section
Image Construction2.2.

In addition to the described fields a checkbox is available on each row. This checkbox is
used to insert a new row above the checkboxed row. The new row will default to TEXT
which can subsequently be changed to whatever activity is desired.

A row is removed by changing the activity to blank.

All edit changes are saved to the xapmcsImage.ini file when the Save Edits button is
used. While this editing is underway there is no change to the periodic construction of
images and RSS feeds that were previously started. The “Apply Changes” button is used
to actually start producing new images and RSS files based upon the edits.

The construction of an image must start with a RSS or CANVAS activity and at least one
of the two are required. The TEXT activity will follow earlier FONT and BOX activity
unless the default properties are adequate. The most recent FONT and BOX is used until
another is defined. A URL or GRAPH activity will be followed by an IMAGE activity to
place the downloaded or constructed image on the canvas. The TEXT activity will
follow other activities where text is to be overlaid. The last activity performed that places
something on the canvas will supersede other activities that occupy the same pixels on
the canvas.

An RSS feed is constructed with a boilerplate header and one item for each CANVAS tag
in the RSS feed specification. A Digital Frame will typically cycle through each of the
items (canvas images) at the cycle rate setup for the frame. The Frame will typically
retrieve the RSS feed after showing all items and after some delay implemented in the
Frame firmware.

Page 7 of 35

http://msdn.microsoft.com/en-us/library/427bttx3(VS.71).aspx
http://msdn.microsoft.com/en-us/library/427bttx3(VS.71).aspx

Page 8 of 35

Figure 2 through Figure 6 provide an example a definition of two RSS feeds, the resultant
image and xml. The first RSS feed was built by drawing two graphs and then placing
two lines of text with a semi-opaque background. The second line of text is based upon a
calculation performed using received xAP data. This calculation can be seen in the
second TEXT tag. The first RSS feed is rebuilt every 100 seconds.

RSS Feed #1 starts with CANVAS activity where the default of 800x480 is used for W
and H and the reconstruction rate of 100 seconds is entered. This is followed by two
pairs of GRAPH/IMAGE activities. The graph is the “Power” group setup in
xapmcsChart using the screen size of “240” also setup in xapmcsChart. The first graph is
constructed based upon chart duration of 1 hour and the second is for 24 hours. The
IMAGE activities resize these to 800x240 and place them as stacked images on the
canvas.

The end of the RSS Feed #1 defines the text overlays. The FONT activity of 20 point,
Bold, Horizontal, Opaque Black and Verdana face are used for both. The BOX is used to
position the text and apply a background color to assure the text does not blend into the
underlying image. A transparent background can also be used as is illustrated later with
RSS Feed #3.

There are two TEXT activities. The first is simple literal “Electricity” that is centered in
the top box. The second is a calculation that uses the instantaneous wattage rate obtained
from xAP message on the LAN. This expression prepends a “$” and appends the
“/Month” interval. The calculation multiplies the 0.072 by the numeric portion (i.e.
.Value property) of the received data identified by the Alias {WattageRate}.

Figure 2 RSS Image Page Example

Page 9 of 35

Figure 3 RSS #1 Results Example

Page 10 of 35

Figure 4 RSS #1 XML Example

The second feed simply downloads a weather radar image and resizes it to fit the full
frame. In this case the RSS activity was used to specify the update rate of every hour.
The IP and File properties were left blank to indicate that xapmcsImage will be serving
the RSS xml file and the default xml filename will be used.

The URL activity identifies where the internet image will be obtained. The default 10
second maximum wait will be used. The IMAGE activity then resizes the downloaded
image to 800x480 and positions it at the upper left.

Page 11 of 35

Figure 5 RSS #2 Results Example

Page 12 of 35

Figure 6 RSS #2 XML Example

The downloaded radar image contains legend and other information that is not of interest
for display and this can be removed with the CROP activity. The simple URL download
RSS definition was augmented to crop off the undesired portion and to relabel the date
stamp overlay to used local time in a more pleasing format. The definition and new
image are shown in Figure 7 and Figure 8. The CROP activity takes a window of
620x370 starting at (0,60) from the image downloaded with the URL activity. The new
lines of FONT, BOX and TEXT place black text on a semi-transparent yellow
background in the upper left of the canvas. The TEXT expression uses the “Now” alias
and the FormatDate characteristic to capture the current time and format it in the desired
manner.

Figure 7 Cropped and Timestamped Radar Image Definition

Page 13 of 35

Figure 8 Cropped and Timestamped Radar Image

Page 14 of 35

The third example illustrates how HTML icons can be used and text can be produced
vertically. In this case a floorplan image is the base image upon which temperature
measurement icons are overlayed. Some of the icons are encased in green boxes. This
was done to distinguish first floor from second floor room measurements. A vertical text
label was also added.

The raw icons that contain temperature readings are only 16x16 pixels. This was too
small to be effectively viewable so they were enlarged to 32x32. This makes for a
somewhat blurry icon. The other approach is to make new icons dynamically by using
TEXT rather than IMAGE activities.

The room temperature reading icons were obtained using the “.Image” property of the
dynamic data identified by an alias name. The X/Y positioning of the icons was selected
by using another application that provides cursor feedback when viewing the background
image. In my case Photoshop was used. No provision for interactive placement of icons
or text is supported with xapmcsImage.

The vertical text in the left column was achieved by using the “Wrap” option in the
TEXT property. The BOX width was selected such that it is wide enough for only one
character.

Page 15 of 35

Figure 9 RSS Feed 3 Definition Example

Page 16 of 35

Figure 10 RSS Feed 3 Resultant Image

Page 17 of 35

The resized icons in Figure 10 are usable, but more pleasing display can be achieved by
overlaying text on a graphic button. This will eliminate the jaggedness resulting from
upsizing a small icon. To accomplish this definition which is currently two lines each for
each temperature reading will not be expanded to three lines. This adds the additional
graphic button and replaces the Alias.Image with Alias.Value that will be used to produce
the text value. The text will normally be two digits so a button and font appropriate for
this length is selected. In some cases, however, the text is three characters and for that
case the button needs to be enlarged to handle the larger text. This conditional sizing is
done for the fireplace temperature using an If expression. Particular the Box and Image
activities have a Width parameter that define the placement of text and this Width entry is
made with the expression:

if {FireplaceTemp.Value}<100|52|62
This expression will evaluate to a width of 52 for temperatures lower than 100 degrees
and 62 otherwise. One of three colored button are selected for the image to indicate
location of temperature reading. These will be green, blue and red based upon first floor,
second floor or outside. This is done by using a different graphic button image for each
of the three. The definition segment and the resultant image are shown in Figure 11 and
Figure 12.

Figure 11 Conditional Expression and Text over Button Definition

Page 18 of 35

Figure 12 Image with Text over Dynamically Sized Buttons

Page 19 of 35

4 xAP Data and Setup

All xAP transmitted xAP data is available for use by xapmcsImge. Any data that is to
become part of a constructed image is identified with an Alias name. To assist in
identifying the data of interest the most recently received values and time of receipt are
shown. A filter mechanism is also available to show selected subsets of the data. A
second filter mechanism is also available from the setup form at the bottom of the page
where the display can be restricted to only data that has an alias name associated with it.

A message item is identified by its address, group, and key elements. The filter is
provided in two rows and the address/group/key information of each item is also shown
in two lines of each row of the table. The first row will be the Source address and either
the first segment of the subaddress or the first element of the group name. The second
row will contain all subsequent selection elements.

Figure 9 show a segment of the xAP Data page. In this example it shows only data where
the second address element is “OneWire”. It shows one item selected with an Alias
named “WattageRate”. In this case it is the Text=XXXX element of the specific
message. When this Alias is used in the RSS Image page (i.e. {WattageRate}) then the
text being used to support the image display will be 1410.4. This value will change over
time depending upon more recent xAP messages from the same source.

Page 20 of 35

Figure 13 xAP Alias Selection

Page 21 of 35

A few setup options are available that primarily affect the user interface. The HTTP port,
the style sheet used, the default background color and the links to be included at the top
of the page can be changed. These are shown in Figure 14. The xAP interface
parameters consist of the UID, a function to query BSC schema devices, and an option to
disable recognition of new devices. The query and recognition will most often be used
when dealing with new xAP hardware and software.

The default RSS server is xapmcsImage and the default location where the constructed
images are built is the \HTML folder under the xapmcsImage install. If a different server
or image location is desired such as the Homeseer server, then the default can be
specified in this area of the setup. This will eliminate the need from including this
information in the definition lines.

Figure 14 xAP Data Setup Options

Page 22 of 35

5 xAP Setup
This section describes the initial setup of a xAP environment for Homeseer. It provides a
high level description of xAP, the basic setup of the mcsXap plugin, setup of an xAP hub
using the xapmcsHub application and a brief introduction to the xAP Viewer.

xapmcsImage does not depend upon Homeseer, but if information from Homeseer is
desired to be used in the constructed Digital Frame images then the mcsXap plugin is
necessary.

If xAP message data is to be used in the construction of Digital Frame images then a xAP
hub is needed on the same computer that xapmcsImage is installed. If xAP data will not
be used as part of the image construction then a xAP hub is not required.

5.1 Background
xAP protocol is implemented as UDP datagrams and this provides some benefits and
some shortcomings. UDP datagrams have a very small protocol overhead which means
they are easy to encode and decode and consume a very small footprint for low overall
network utilization. The data is broadcast which means every device on the network
receives the same information simultaneously. This makes for a convenient distributed
computing environment. xAP is designed so it can operate on the smallest of processors
such as the PIC so application in dedicated embedded applications is quite achievable.
There do exist hardware devices that natively communicate with xAP.

The tradeoff for UDP vs. TCP is that communications are not assured by the protocol. A
UDP message is transmitted and there is no acknowledge of its receipt or retry if the
transmission fails. Since messages are broadcasted every devices will receive it and
process it through its recognition stack to the point of recognizing it is or is not interested
in its content. UDP is also intended only for LAN and not WAN communications. It is
possible to control remote locations with a TCP communication, but this cannot be done
with an UDP one.

The xAP protocol layer on top of UDP does address some of the shortcomings. It
provides a schema whereby message receipt acknowledgement is provided. Applications
are also available that will wrap xAP messages inside of TCP communications to allow
WAN control via xAP. In both of these cases the applications become responsible for
communication integrity rather than having this responsibility at the transport layer.

mcsXap is a Homeseer plugin that is able to recognized LAN traffic using the xAP
protocol. This protocol is just another one of the many that have been defined (e.g.
SMTP, HTTP) and layered on top of the IP network.

The xAP protocol is extensible. There are core schema that provide for maximum
interoperability and there are specialized one that target specific niche. mcsXap is able to

Page 23 of 35

recognize all xAP schema, but is only able to translate selected ones into the Homeseer
model of devices.

mcsXap will decode and encode xAPBSC, xap-x10 and xap-IR schema which is widely
used core schema. xAPBSC provides the ability to communicate Homeseer
DeviceStatus, DeviceValue, and DeviceString. xap-x10 provides the ability for
additional X10 interfaces to be connected to Homeseer. Xap-IR provides the ability for
additional IR interfaces to be connected to Homeseer.

It also support schema that are developed around the mcs environment and includes setio,
role, time, wdt, homeseer, voice, and writelog. These special schema have application
within a mcs xAP environment, but will not have application to those outside of
Homeseer-oriented setups. For example, the homeseer.event schema is used to allow the
Homeseer Log to exist on the LAN rather than within Homeseer and all xAP applications
can write to this log just as one would write to the Homeseer Log using hs.Writelog.

The typical initial use of xAP with Homeseer is to interface with some other xAP
application such as xapmcs1wire to get 1-wire sensor readings into Homeseer or
xapmcsRF to get W800 or RFXCOM RF translations into Homeseer. In most of these
cases the information of interest is communicated using xAPBSC schema and that will be
the only schema that needs to be considered within mcsXap.

5.2 mcsXap Installation

mcsXap is provided in two versions. One is targeted to Homeseer V1.x and is an .ocx
implemented in VB6. The second is targeted to Homeseer V2.x and is a .dll implemented
in VB.NET.

The set of files are obtained from the xAP Library section of the Homeseer Message
Board in the form of a zip container. The contents of the zip file should be extracted into
the same folder where Homeseer.exe is running. This will be something like C:\Program
Files\Homeseer HS2\ but several variants are used.

The next time Homeseer starts it will recognize mcsXap and it will be available to be
included as an active Homeseer plugin. Figure 11 shows a segment of the
Setup\Interfaces page. mcsXap is shown as the first row. The three columns of buttons
indicate that it can be used for IR, X10 and Other. For most users it will only be an Other
interface with IR and X10 provided by other plugins. The selections in this figure show
it being enabled only as an Other plugin. The Save button must be used to record this
intent after the button is used to enable it.

Page 24 of 35

Figure 15 Homseer Setup Interfaces Page

Once mcsXap is active as a Homeseer plugin then it needs to be setup to identify the
scope of what it is suppose to do. mcsXap is primarily a conduit to translate information
into a Homeseer view of it. It is just like the CM11A/CMU12U plugin that translates the
X10 protocol on the powerline or the UPB plugin that translates UPB powerline protocol.
In the mcsXap case the LAN is the physical connection and xAP is the protocol.

When mcsXap or any mcs xAP application starts it will look for the first NIC and assume
that this NIC will be the one to use for xAP communications. If this default is not the
correct one then a specific one can be identified by including the desired information in
the file \Config\mcsXap.ini. A sample mcsXap.ini showing the setup for the NIC using
address 192.168.0.117 is shown below.

[INTERFACE]
InterfaceAddress=192.168.0.117
BroadcastAddress=192.168.0.255

5.3 mcsXap Initial Setup
Figure 12 contains the settings of most interest in getting mcsXap functional. For most
users the only xAP schema of interest will be xAPBSC and to enable the Receive BSC
and Transmit BSC checkboxes will be checked. Figure 12 shows also the three X10
related options as being selected. Most users will not have these enabled, but no harm is
one with them enabled.

Page 25 of 35

Figure 16 mcsXap Primary Setup Options

The second setup section shown in Figure 12 is used to define how the address of the
xAPBSC message is constructed. The address is the mapping between a Homeseer
device reference and an xAP message that will be recognized by other xAP applications.
In general it does not matter what the address format is, but whatever is selected should
not be changed once the xAP environment is established. A change in the xAP address
would be similar to a wholesale change in all the device codes in Homeseer thus resulting
in breakage of all the events that use devices.

The mcs xAP environment has a convention of Location_Name_DC.SerialNumber.Type
for identification of Homeseer devices. This simply means that the default information
extracted from the address can be used to automatically determine the device type, name,
etc. The SerialNumber segment of the address is used by the database application within
the mcs environment to define a database table or field and start collecting data about the
device.

Other individuals have different conventions as to how they address devices. Two
options are provided by mcsXap to accomplish the address definition. The first one
forces a three segment address and the second one is a variable segment one. The
checkboxes are used to select which information is included in each layout.

Page 26 of 35

Unless there is a reason to change the default the default should be used to minimize
downstream headaches.

Speech and Voice Recognition does not have the utility it once had before HS2.x and the
speaker client. For most users none of the checkboxes should be checked in this section.

The Event Triggers and Actions will likely be of interest eventually, but are not needed
initially. An event trigger can be setup to look for a specific xAP message. Since the
messages that most users will be using are xAPBSC and these messages are mapped into
Homeseer devices, then a standard HS event trigger on a device will be the easiest way to
recognize the event.

For the same reason the Action to send an xAP message will also not be used by most
since the messages they will be sending will be xAPBSC and this is sent by simply
changing the value/status/string of the Homeseer device.

What some may find useful is the Event Trigger based upon a lack of data being updated
by an external xAP application. This would then be used to take an action to restart the
application or generate message to provide awareness.

For the initial setup the Event support within mcsXap should not bog one down. It can
always be added in the future when a need is identified.

There are several other setup options available and these should all be left in the disabled
or default state. When specific need exists and greater comfort exists in the role that
mcsXap provides then it makes sense to revisit the other options available.

5.4 mcsXap Initial Use
The first thing that one needs to do is get visibility into xAP traffic that exists. There are
three elements to this. One is the xAP Hub. The second is the xAP Viewer. The third is
the mcsXap viewing filters.

When a UDP datagram is sent it must be directed to a specific port or socket. xAP has
reserved port 3639 for this purpose. It is much like HTTP defaults to 80 and SMTP
defaults to 25 etc. Just as you cannot have two Web servers both responding to port 80,
you cannot have more than one xAP application responding to port 3639. This is where
the xAP hub comes into play. The xAP hub is given the responsibility to listen for all
incoming xAP messages on port 3639. When it gets one it uses the localhost (127.0.0.0)
interface to retransmit that message to every other xAP application running on the same
computer. When something like xapmcs1Wire broadcasts a sensor value change that
broadcasted message is actually received on the computer by the xAP hub and the xAP
hub retransmits it locally to mcsXap and all others running on that same computer.

Page 27 of 35

Since the xAP hub is the router for xAP traffic it is desirable that it is running before
other xAP applications are started. This way startup information from the other
applications will be routed to others that may want to listen.

The second item is the xAP Viewer. The xAP Viewer is a diagnostic tool. It is not
required for normal xAP operations, but when some investigation is needed then it is an
essential tool. It shows all the xAP traffic and presents it in an easily viewable manner.

The xAP viewer is a hybrid application. If it starts and it recognizes that there is nothing
providing the role of xAP Hub then it will assume this role. If it does have this role (as is
indicated in its title bar) and the viewer is closed then nothing will be serving the role of
xAP hub and communications will effectively stop, but while it is open there will be
communications.

The third item is within mcsXap with setup as shown in Figure 13. At the bottom of this
figure are two lines that each show an xAP message which has the potential to be mapped
into an Homeseer device. If the “A”ccept column checkbox is checked then all future
receptions of a message from this address will be decoded and the values placed in the
DeviceStatus, DeviceValue and DeviceString of the Homeseer Device.

At the time the “A” checkbox is checked a specific Device Code can be entered into text
box on the same row. There is also a location and a name textbox on the same line that
are not visible on the inserted figure. If all three of these are left blank then mcsXap will
assign a Device Code and give it a name and location. These three parameters can be
later changed without implications to the functioning of mcsXap. If changes are made it
is best to do if from mcsXap rather than from Homeseer so mcsXap will know about the
change.

There are five checkboxes at the top portion of Figure 13. These are used to identify the
segment of the population of received xAP messages that should be viewed on the
browser on the lines that were discussed in the prior paragraph.

The “Show Homeseer Received BSC” will normally be checked since xAPBSC schema
is the one most used and visibility into what is received will be desired.

The “Show Other Received xAP Schema” covers all other messages. These messages are
referred to as “Raw”. For these messages mcsXap will map their contents into Homeseer
devices as best it can. This usually means the message body will be place in the
DeviceString. What this means is that events based upon new values from xAP messages
will not be able to be setup using the event model of Homeseer which triggers only on
DeviceStatus and DeviceValue. If changes in these devices need event notification then
the mcsXap Event Trigger can be used. This, however, is typically not needed since the
message content is generally informative rather than actionable.

Every device in Homeseer can have its values sent as xAP messages using the xAPBSC
schema. It is likely that a limited number of the devices will need to be transmitted for

Page 28 of 35

other xAP applications to use. This of course depends upon the extent of the xAP
network. The “Show Homeseer Sourced BSC” checkbox will make the set of device
available on this page and then “A”ccept checkbox used to select the device as being
active as an xAP message. The message will be sent every time Homeseer changes the
DeviceStatus, DeviceValue or DeviceString of the device. It will also be sent when
queries using the xAP query schema.

The query schema is xAPBSC.Query. xAP allows wildcarding with xAPBSC as well as
all other xAP schema. That means that a query can be made for the status of a single
device or of a class of multiple devices.

mcsXap also provides a button to simulate a fully wildcarded xAPBSC.Query message.
This is “Send BSC” button. When this button is clicked then the values for all Homeseer
devices that have been “A”ccepted for xAP message transmission will be sent using the
xAPBSC.Info schema.

There is also a “Query BSC” button on the line labeled “BSC In”. When this button is
clicked a fully wildcarded xAPBSC.Query message will be sent to all other xAP
applications on the LAN and each application will respond with the current values of all
their devices. When Homeseer starts mcsXap will automatically send this same request
so it becomes synchronized with the entire xAP network.

The “BSC In” line also has input provisions for “BSC Target Address Mask”. When this
is filled in then the scope will be reduce of the xAP endpoints that will respond. The
mask can be a specific end point or partially wildcarded. Initially a fully wildcarded
query will suffice. When there is more familiarity with the xAP addressesing structure
then more restrictive queries can be used.

If new devices are added to Homeseer outside of mcsXap and this device is to be
transmitted via xAP then it will be necessary to use the “Repopulate” button on the “BSC
Out” line. mcsXap populates its image of Homeseer devices at startup so a restart will
also have the same effect as using the “Repopulate” button.

The “Display” line checkboxes are used as filters based upon the “R”ejected and
“A”ccepted checkboxes associated with each device in the body of the table. Normally
the “Show Only Accepted” is the only one that is checked for normal viewing. When
new devices are to be added it is unchecked so they become visible for selection.

The “R”ejected checkbox is used a display filtering mechanism to hide devices that are
not of immediate interest. There is also a “D”elete checkbox. When it is used then all
record of receiving the message will be removed. It is appropriate for invalid messages
of for messages that were received from hardware that no longer exists.

Page 29 of 35

Figure 17 Message Selection Filters

5.5 xapmcsHub Setup

xapmcsHub is available from the xAP Library section of the Homeseer Message Board.
It is a VB6 .exe application that provides a user interface access via a tray icon.
xapmcsHub should be installed in its own folder. A structure such as C:\Program
Files\xAP\xapmcsHub\xapmcsHub.exe is appropriate. Other xAP applications would
also be installed in a similar manner in independent folders.

The setup form is viewed from the tray icon. Three checkboxes are provided for setup of
xapmcsHub. The typical configuration will be as shown in Figure 14 where only xAP
will be processed, an icon will appear in the tray and no backup hub function will be
spawned. Once stable operations are achieved the tray icon may be removed if one
desires a less-cluttered tray.

Page 30 of 35

Setup Options
Statistics

Last message routed

Figure 18 xAP Hub Activity Form

There are a variety of xAP hubs available and any should be able to be used. There xFx
(via xapautomation.org) makes available a .NET hub that can be installed as a service.
This is an attractive option as it provides the benefit of running before other desktop xAP
applications.

The only issue I have with it is its lack or removal of duplicate messages. In many case
duplicates do not matter, but in cases where the message triggers events then having
multiple events triggers is problematic. Note in Figure 14 that 5029 duplicate messages
were detected and filtered-out by xapmcsHub.

5.6 xAP Message Viewer

The xAP Viewer was originally developed by xapFramework.net and is now maintained
by xFx. It is a useful tool to observe xAP message traffic and it can also serve the dual
role as a xAP hub.

Figure 15 and Figure 16 show a typical display for messages summaries and message
detail that is available from a Window’s GUI. When using the xAP viewer and a
dedicated hub one needs to be careful to start the dedicated hub before the viewer
otherwise the hub will not be able to gain access to the xAP port on the primary interface.

The left panel of the viewer provides a structured list of xAP endpoints. The + and –
symbols can be used the compress and expand the structure. Clicking on any level will
limit the contents of the right panel to only those endpoints. The right panel provides a
chronological list of xAP messages. Clicking on a message from this panel will bring up

Page 31 of 35

Page 32 of 35

a popup form that contains the detail of the message. An example is shown in Figure 16.
The content of this second panel can be edited and it can be retransmitted. These features
make it useful for diagnostic and testing activities.

Figure 19 xAP Viewer

Page 33 of 35

Figure 20 xAP Viewer Message Detail

Page 34 of 35

Page 35 of 35

6 xAP Schema
The xAP schema described in this section is used by xapmcsImage.

6.1 xapmcsImage

6.1.1 Receive xAP Schema

All xAP messages are accepted

6.1.2 Transmit xAP Schema

WDT.Echo
 Echo.Response
 Response=<value received in wdt.echo/echo.query>

Homeseer.Role
 Role.Notification
 Role=Computer Management
 Path=<folder path to xapmcsWebControl.exe>

Homeseer.Event
 Event.Log
 Time=<time>
 Type=<text>
 Data=<text>

	1 Introduction
	2 xapmcsImage Setup
	2.1 Top Level Organization
	2.2 Image Construction
	2.3 Parameter Expressions

	3 RSS Image Browser Page
	4 xAP Data and Setup
	5 xAP Setup
	5.1 Background
	5.2 mcsXap Installation
	5.3 mcsXap Initial Setup
	5.4 mcsXap Initial Use
	5.5 xapmcsHub Setup
	5.6 xAP Message Viewer

	6 xAP Schema
	6.1 xapmcsImage
	6.1.1 Receive xAP Schema
	6.1.2 Transmit xAP Schema

